Exercice 1

Suites numériques

Soit $(U_n)_{n\geq 1}$ la suite définie par :

$$U_n = \sum_{k=1}^{k=n} \frac{1}{\sqrt{n^2 + k}}$$

a) Montrer que:

$$(\forall n \in \mathbb{N}^*)$$
 $\frac{n}{\sqrt{n^2 + n}} \le U_n \le \frac{n}{\sqrt{n^2 + 1}}$

b) En déduire que $(U_n)_{n>1}$ est bornée

Exercice 2

On considère la suite $(U_n)_n$ définie par

:
$$U_0 = -1$$
 . $U_1 = \frac{1}{2}$ et $U_{n+2} = U_{n+1} - \frac{1}{4}U_n$

- 1) on pose $V_n = U_{n+1} \frac{1}{2}U_n$ et $W_n = 2^n U_n$
- a) montrer que $(V_n)_n$ est une suite géométrique puis calculer V_n en fonction de n
- b) montrer que $(W_n)_n$ est une suite arithmétique puis calculer W_n en fonction de n
 - 2) en déduire que $(\forall n \in \mathbb{N})$ $U_n = \frac{2n-1}{2^n}$
- 3) on pose $S_n = \sum_{k=0}^{k=n} U_k$ prouver que:

$$(\forall n \in \mathbb{N})$$
 $S_n = 2 - \frac{2n+3}{2^n}$

Exercice 3

Soit $(U_n)_{n\in\mathbb{N}}$ la suite telle que :

$$U_0 = 2$$
 et $U_{n+1} = \frac{1}{2} + \sqrt{\frac{1}{2} \left(U_n^2 - U_n + \frac{1}{2} \right)}$

On pose $V_n = U_n^2 - U_n$ pour tout entier n de \mathbb{N}

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n \ge 1$
- 2) a) montrer que $(V_n)_n$ est une suite géométrique
 - b) en déduire que :

$$(\forall n \in \mathbb{N})$$
 $U_n = \frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{8}{2^n}}$

3) démontrer que :

$$(\forall n \in \mathbb{N}) \quad 0 < U_n - 1 \le \left(\frac{1}{2}\right)^{n-1}$$

Exercice 4

On considère la suite $(U_n)_n$ définie

$$par: U_0 = 1 et U_{n+1} = \frac{7U_n + 6}{U_n + 2}$$

- 1) a) montrer que $(\forall n \in \mathbb{N})$ $0 < U_n < 6$
- b) étudier la monotonie de $(U_n)_n$
- 2) on pose $V_n = \frac{U_n 6}{U_n + 1}$ pour tout entier nature l
 - a) montrer que $(V_n)_n$ est une suite géométrique
 - b) déterminer U_n en fonction de n
- 3) montrer que:

$$\left(\forall n \in \mathbb{N}\right) \quad \left|U_{_{n+1}}-6\right| \leq \frac{1}{2} \left|U_{_{n}}-6\right|$$

4) montrer par récurrence que :

$$(\forall n \in \mathbb{N}) \quad |U_n - 6| \le 5 \times \left(\frac{1}{2}\right)^n$$

Exercice 5

Soit $(U_n)_n$ la suite telle que :

$$U_0 = 1$$
 $et U_{n+1} = U_n^2 + U_n$

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n \ge 1$
- 2) montrer que $(U_n)_n$ est croissante
- 3) a) vérifier que $(\forall n \in \mathbb{N})$ $U_{n+1} \ge 2U_n$
 - b) en déduire que $(\forall n \in \mathbb{N})$ $U_n \ge 2^n$

Exercice 6

 $(U_n)_n$ une suite telle que :

$$U_0 = -2$$
 et $U_{n+1} = \frac{U_n^2 + 2}{U_n - 2}$

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n \leq -1$
- 2) montrer que $(U_n)_n$ est croissante

Suites numériques

- 3) a) montrer que: $(\forall n \in \mathbb{N}) |U_{n+1} + 1| \le \frac{1}{2} |U_n + 1|$
- *b)* montrer que $(\forall n \in \mathbb{N}) |U_n + 1| \le \left(\frac{1}{2}\right)^n$

Exercice 7

On considère la suite $(U_n)_n$ définie par : $U_{n+1} = \frac{2U_n}{1 + (n+2)U_n}$ et $U_0 = \frac{1}{3}$

- 1) calculer U_1
- 2) on pose $V_n = \frac{1}{U_n} n$
- a) montrer que $(V_n)_n$ est une suite arithmétique
 - b) exprimer U_n en fonction de n
 - 3) calculer en fonction de n
 - *La somme* $T_n = \frac{1}{U_0} + \frac{1}{U_1} + \dots + \frac{1}{U_n}$

Exercice 8

Soit la suite $(U_n)_n$ telle que

$$U_0 = 0$$
 , $U_1 = 1$ et $U_{n+2} = \frac{1}{6}U_{n+1} + \frac{1}{6}U_n$

1) on pose:

$$V_n = U_{n+1} - \frac{1}{2}U_n$$
 et $W_n = U_{n+1} + \frac{1}{3}U_n$

- a) montrer que $(V_n)_n$ est géométrique puis déterminer V_n en fonction de n
- b) montrer que $(W_n)_n$ est géométrique puis calculer W_n en fonction de n
- $oldsymbol{^{2}}$ 2) en déduire l'expression de $oldsymbol{^{U}_{n}}$ en fonction de $oldsymbol{^{n}}$

Exercice 9

On considère les suites $(U_n)_{n\geq 1}$ et $(V_n)_{n\geq 1}$ et $(V_n)_{n\geq 1}$ telles que $U_n=\sum_{k=1}^{k=2n}\frac{\left(-1\right)^k}{k}$, $V_n=\sum_{k=1}^{k=2n+1}\frac{\left(-1\right)^k}{k}$

- 1) montrer que $(\forall n \in \mathbb{N}^*)$ $V_n < U_n$
- 2) montrer que $(U_n)_{n>1}$ est

décroissante et que $(V_n)_{n\geq 1}$ est croissante

Exercice 10

(suite de Fibonacci)

On considère la suite $(U_n)_n$ définie $par: \begin{cases} U_0 = U_1 = 1 \\ U_{n+2} = U_{n+1} + U_n \end{cases}$

- 1) a) montrer que $U_n > 0 \quad (\forall n \in \mathbb{N})$
- b) étudier la monotonie de la suite $(U_n)_n$
- 2) montrer que $U_n \ge n \quad (\forall n \in \mathbb{N})$
- 3) montrer que $U_n U_{n+2} + (-1)^{n+1} = (U_{n+1})^2$
- 4) on pose $x_n = \frac{U_{2n-1}}{U_{2n}}$ et $y_n = \frac{U_{2n}}{U_{2n+1}}$

pour tout $\,$ n $\,$ de $\,$ \mathbb{N}^*

a) montrer que .

$$\left(\forall n \in \mathbb{N}^*\right) \quad y_n - x_n = \frac{1}{U_{2n} U_{2n+1}}$$

en déduire $(\forall n \in \mathbb{N}^*)$ $0 < y_n - x_n < \frac{1}{n}$

b) montrer que :

$$(\forall n \in \mathbb{N}^*) x_{n+1} - x_n = \frac{1}{U_{2n} U_{2n+2}}$$

$$et \quad \left(\forall n \in \mathbb{N}^*\right) \quad x_n = \frac{1}{y_n} - 1$$

- b) montrer que $(x_n)_n$ est croissante et $(y_n)_n$ décroissante
- 5) on pose $S_n = \sum_{k=0}^{k=n} \frac{U_k}{3^k}$
- a) calculer $3S_n$ puis $3(3S_n S_n)$
- b) en déduire la relation liant U_n ; S_{n-2} , S_n
- 6) prouver que:

$$(\forall n \in \mathbb{N})$$
 $U_n = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$

le nombre d'or : $\phi = \frac{\sqrt{5} + 1}{2}$